🎓

財商學院

正在載入課程內容...

Compound interest introduction | Interest and debt | Finance & Capital Markets | Khan Academy
🎬 互動字幕 (27段)
0.0s
▶️ 播放中 - 點擊暫停
1x
00:00
What I want to do in this video is talk a little bit about compounding interest, and then have a little bit of a discussion of a way to quickly, kind of an approximate way to figure out how quickly something compounds, and then we'll actually see how good of an
在這支影片中,我想先簡單談談複利,然後討論一種快速、近似的方式來計算複利速度,接著我們會實際看看這個近似方法有多精確。
00:16
approximation this really is.
這個近似方法到底有多準確。
00:19
So just as a review, let's say I'm running some type of a bank, and I tell you that I am offering 10% interest that compounds annually.
舉個例子來複習一下,假設我經營一家銀行,我告訴你我提供年複利 10% 的利率。
00:32
That's usually not the case in a real bank.
在真實的銀行中通常不是這樣運作的。
00:35
You would probably compound continuously, but I'm just going to keep it a simple example, compounding annually.
你可能會選擇連續複利,但我這裡只用一個簡單的例子,採用年複利。
00:40
There are other videos on compounding continuously.
關於連續複利,網路上有其他影片可以參考。
00:43
This makes the math a little simpler, and all that means is that, let's say today, today, you deposit $100 in that bank account.
這樣數學會簡單一些,意思是說,假設今天你在這個銀行帳戶存入 100 美元。
00:53
If we wait one year, and you just keep that in the bank account, then you'll have your $100, you'll have your $100, plus 10% on your $100 deposit. 10% of $100 is going to be another $10.
如果我們等一年,你把錢繼續放在帳戶裡,你會有原本的 100 美元,加上 100 美元存款的 10% 利息。100 美元的 10% 就是另外 10 美元。
01:08
So after a year, you're going to have $110, so you can just say I added 10% to the 100, 100, and then after two years, or a year after that first year, after two years, you're going to get 10%, not just on the $100, you're going to get 10% on the $110.
所以一年後,你會有 110 美元,你可以說我在 100 上加了 10%,然後兩年後,也就是第一年後再過一年,兩年後,你得到的 10% 利息,不是只算在 100 美元上,而是算在 110 美元上。
01:30
So you get 10% on the $110, is you're going to get another $11, so 10% on $110 is $11, so you're going to get 110.
所以你從 110 美元得到 10% 的利息,也就是 11 美元,110 美元的 10% 是 11 美元,所以你會得到 110 美元。
01:39
That was, you can imagine, you're depositing entering your second year, and then you get plus 10% on that, not 10% on your initial deposit, that's why we say it compounds.
你可以想像,你在第二年存入後,再對這筆金額加 10%,而不是對你最初的存款加 10%,這就是為什麼我們說它是複利。
01:49
You get interest on the interest from previous years, so 110 plus now $11.
你從前幾年的利息中又賺取利息,所以 110 美元再加上現在的 11 美元。
01:56
So every year, the amount of interest we're getting, if we don't withdraw anything, goes up, so now we have $121, and I could just keep doing that, and the general way to figure out how much you have after, let's say, n years, is you multiply it, so let's say my
所以每一年,如果我們不提領任何款項,我們得到的利息金額會增加,現在我們有 121 美元,我可以一直這樣算下去,而計算 n 年後你有多少錢的通用方法是相乘,所以我會用一點代數,假設這是我的原始存款,或稱為本金,經過 x 年後,經過一年後,你只需要乘以這個數字,你乘以 1.1,實際上讓我這樣寫,我不想講得太抽象,所以為了這裡的數學運算,要得到這個數字,我們直接相乘,那個數字是 100 乘以 1 加上 10%,或者你可以說 1.1,現在這個數字將會是 110 乘以 1.1,所以是這樣,它是 100 乘以 1.1,也就是那個數字,然後我們再將它乘以 1.1,記住,1.1 是從哪裡來的?1.1,1.1 等同於 100% 再加上另一個 10%,對吧,這就是我們得到的,我們有原始存款的 100% 再加上另一個 10%,所以我們乘以 1.1,這裡我們做了兩次,我們乘以 1.1 兩次,所以三年後,有多少錢?100 乘以 1.1 的三次方,經過 n 年後,現在我們變得有點抽象了,我們會有 100 乘以 1.1 的 n 次方,你可以想像這不容易計算,如果情況都是處理 10%,如果我們處理的世界是,假設是 7%,所以假設這是另一種情境,我們有 7% 的年複利,那麼一年後,我們會有 100 乘以,而不是 1.1,而是 100% 加上 7%,或 1.07,經過,讓我們跳過,讓我們看三年後,三年後,我可以算中間的兩年,會是 100 乘以 1.07 的三次方,1.07 乘以
02:14
original, I'll use a little bit of algebra here, so let's say this is my original deposit, or my principal, however you want to view it, after x years, so after one year, you would just multiply it to get to this number right here, you multiply it by 1.1, actually let
原始,我會在這裡使用一點代數,所以假設這是我的原始存款,或稱為本金,你想怎麼看都行,經過 x 年後,所以經過一年後,你只需要乘以它來得到這裡的這個數字,你乘以 1.1,實際上讓
02:32
me do it this way, I don't want to be too abstract, so just to get the math here, so to get to this number right here, we just multiply it, that number right there is 100 times 1 plus 10%, or you could say 1.1, now this number right here is going to be this
我這樣做,我不想講得太抽象,所以為了這裡的數學運算,要得到這個數字,我們直接相乘,那個數字是 100 乘以 1 加上 10%,或者你可以說 1.1,現在這個數字將會是這個
02:50
110 times 1.1 again, so it's this, it's the 100 times 1.1, which was this number right there, and now we're going to multiply that times 1.1 again, and remember, where does the 1.1 come from? 1.1, 1.1 is the same thing as 100% plus another 10%, right, that's what
110 再乘以 1.1,所以是這樣,它是 100 乘以 1.1,也就是那個數字,然後我們將那個數字再乘以 1.1,記住,1.1 是從哪裡來的?1.1,1.1 等同於 100% 再加上另一個 10%,對吧,這就是
03:13
we're getting, we have 100% of our original deposit plus another 10%, so we're multiplying by 1.1, here we're doing that twice, we multiply by 1.1 twice, so after three years, how much
我們得到的,我們有原始存款的 100% 再加上另一個 10%,所以我們乘以 1.1,這裡我們做了兩次,我們乘以 1.1 兩次,所以三年後,有多少
03:32
100 times 1.1 to the 1.1 to the third power, after n years, now we're getting a little abstract here, we're going to have 100 times 1.1 to the nth power, and you can imagine this
錢?100 乘以 1.1 的三次方,經過 n 年後,現在我們變得有點抽象了,我們會有 100 乘以 1.1 的 n 次方,你可以想像這
03:47
is not easy to calculate, and if this was all the situation where we're dealing with 10%, if we're dealing a world with, let's say it's 7%, so let's say this is a different reality here, where we have 7% compounding annual interest, then after 1 year, we would have 100 times,
不容易計算,如果情況都是處理 10%,如果我們處理的世界是,假設是 7%,所以假設這是另一種情境,我們有 7% 的年複利,那麼一年後,我們會有 100 乘以,
04:10
instead of 1.1, it'd be 100% plus 7%, or 1.07, after, let's skip, let's go to 3 years, after 3 years, I could do 2 in between, it'd be 100 times 1.07 to the third power, 1.07 times
而不是 1.1,而是 100% 加上 7%,或 1.07,經過,讓我們跳過,讓我們看三年後,三年後,我可以算中間的兩年,會是 100 乘以 1.07 的三次方,1.07 乘以
04:27
itself three times, after n years, it'd be 1.07 to the nth power, so I think you get the sense here that, although the idea is reasonably simple, to actually calculate compounding interest is actually pretty difficult, and even more, let's say I would ask you, how long does it take, how long does it take to double your money? So if you were to just use this
自身三倍,經過 n 年後,會是 1.07 的 n 次方,所以我認為你這裡可以理解到,雖然概念相當簡單,但實際要計算複利其實相當困難,而且更甚者,假設我問你,要花多久時間,要花多久時間才能讓你的錢翻倍?所以如果你只是用這個
04:58
math right here, you'd have to say, gee, I would have to double my money, I would have to start with $100, and I'm going to multiply that times, let's say whatever, let's say it's a 10% interest, 1.1, or 1.10, depending on how you want to view it, to the x is equal
這裡的數學,你得要說,哎呀,我得要讓我的錢翻倍,我得要從 100 美元開始,然後我要乘上,假設不管多少,假設是 10% 的利率,1.1,或 1.10,取決於你怎麼看,的 x 次方等於
05:15
to, well, I'm going to double my money, so it's going to have to equal to $200, and now I'm going to have to solve for x, and I'm going to have to do some logarithms here, and you can divide both sides by 100, you get 1.1 to the x is equal to 2, I just divided both sides by 100, and then you could take the logarithm of both sides base 1.1, and
,嗯,我得要讓我的錢翻倍,所以它得要等於 200 美元,現在我就得要解出 x,而且我得要在這裡做一些對數,你可以將兩邊都除以 100,你會得到 1.1 的 x 次方等於 2,我剛剛把兩邊都除以 100,然後你可以取兩邊以 1.1 為底的對數,而
05:35
you get x, and I'm showing you that this is complicated on purpose, and if any of this is confusing, there's multiple videos on how to solve these, you get x is equal to log base 1.1 of 2, and most of us cannot do this in our head, so although the idea is simple,
你會得到 x,而我故意向你展示這個很複雜,如果這裡有任何令人困惑的地方,有很多影片在教如何解這些,你會得到 x 等於以 1.1 為底 2 的對數,而我們大多數人沒辦法在腦中計算,所以雖然概念很簡單,
05:51
how long will it take for me to double my money to actually solve it to get the exact answer is not an easy thing to do, you can just keep, if you have a simple calculator, you can kind of keep incrementing the number of years until you get a number that's close, but no
要花多久時間才能讓我的錢翻倍,要實際解出它來得到精確答案並不是一件容易的事,如果你有個簡單的計算機,你可以一直逐年增加,直到你得到一個接近的數字,但沒有
06:06
straightforward way to do it, and this is with 10%, if we're doing it with 9.3%, it just becomes even, even more difficult. So what I'm going to do in the next video is I'm going to explain something called the rule of 72, which is an approximate way to figure out how long to
直接的方法可以做到,而這是在 10% 的情況下,如果我們用 9.3% 來做,它只會變得更,更困難。所以我在下一支影片要做的是,我要解釋一個叫做 72 法則的東西,這是一種近似的方法,用來找出要花多久時間來
06:23
answer this question, how long does it take to double your, I forgot the word, the most important word, how long does it take to double your money, and we'll see how good of an approximation it is in that next video.
回答這個問題,要花多久時間才能讓你的,我忘了那個詞,最重要的詞,要花多久時間才能讓你的錢翻倍,我們會在下一支影片中看到它的近似程度有多好。

Compound interest introduction | Interest and debt | Finance & Capital Markets | Khan Academy

📝 影片摘要

本單元深入介紹複利的基本概念與其計算的複雜性。影片從年複利 10% 的實例出發,解釋本金如何隨時間透過利滾利的方式增長,並推導出通用的複利公式。接著,影片探討了計算資產翻倍時間的困難之處,指出這需要運用複雜的對數運算,難以心算。最後,影片引出「72法則」作為一種快速估算資產翻倍時間的近似方法,為後續的教學內容鋪陳。

📌 重點整理

  • 複利(Compounding)是指將利息計入本金,讓先前的利息也能產生新利息的過程。
  • 年複利 10% 的計算方式是將本金乘以 1.1,每經過一年重複此乘法運算。
  • 通用的複利公式為:最終金額 = 本金 × (1 + 利率) ^ 年數。
  • 要計算資產翻倍的確切年份,需要解一個複雜的指數方程式。
  • 解指數方程式通常需要用到對數(logarithms),這對多數人來說難以心算。
  • 影片提出一個核心問題:在給定利率下,需要多久時間才能讓錢翻倍?
  • 直接逐年計算雖然可行,但缺乏快速、直接的求解方法。
  • 影片預告將介紹「72法則」作為一種快速估算資產翻倍時間的近似工具。
📖 專有名詞百科 |點擊詞彙查看維基百科解釋
複利
compounding
每年
annually
本金
principal
抽象的
abstract
對數
logarithms
近似的
approximate
連續地
continuously
提取
withdraw
遞增
incrementing
簡單的
straightforward

🔍 自訂查詢

📚 共 10 個重點單字
compounding /kəmˈpaʊndɪŋ/ noun
the process of accumulating interest on an investment over and above the initial interest.
複利;利滾利
📝 例句
"That's why we say it compounds."
這就是為什麼我們說它是複利。
✨ 延伸例句
"The power of compounding can turn small savings into a large sum over time."
複利的力量可以將小額儲蓄在一段時間後變成一大筆錢。
annually /ˈænjuəli/ adverb
once a year.
每年;一年一次地
📝 例句
"I am offering 10% interest that compounds annually."
我提供年複利 10% 的利率。
✨ 延伸例句
"The company reports its financial results annually."
該公司每年報告其財務結果。
principal /ˈprɪnsəpəl/ noun
the original sum of money borrowed in a loan or put into an investment.
本金;資本
📝 例句
"This is my original deposit, or my principal."
這是我的原始存款,或稱為我的本金。
✨ 延伸例句
"You will get your principal back at the end of the investment term."
你將在投資期結束時拿回你的本金。
abstract /ˈæbstrækt/ adjective
existing in thought or as an idea but not having a physical or concrete existence.
抽象的;理論上的
📝 例句
"Now we're getting a little abstract here."
現在我們變得有點抽象了。
✨ 延伸例句
"The concept of time is quite abstract for young children."
時間的概念對幼童來說相當抽象。
logarithms /ˈlɔːɡərɪðəmz/ noun
a quantity representing the power to which a fixed number (the base) must be raised to produce a given number.
對數
📝 例句
"I'm going to have to do some logarithms here."
我得要在這裡做一些對數運算。
✨ 延伸例句
"Solving this equation requires the use of logarithms."
解這個方程式需要用到對數。
approximate /əˈprɒksɪmət/ adjective
close to the actual, but not completely accurate or exact.
近似的;大約的
📝 例句
"An approximate way to figure out how quickly something compounds."
一種用來計算複利速度的近似方法。
✨ 延伸例句
"The approximate cost of the project is $5,000."
該專案的預估成本是 5,000 美元。
continuously /kənˈtɪnjuəsli/ adverb
in a way that is without interruption or stopping.
連續地;持續地
📝 例句
"You would probably compound continuously."
你可能會選擇連續複利。
✨ 延伸例句
"The machine operates continuously for 24 hours."
這台機器可持續運作 24 小時。
withdraw /wɪðˈdrɔː/ verb
to take money out of a bank account.
提取;提款
📝 例句
"If we don't withdraw anything."
如果我們不提領任何款項。
✨ 延伸例句
"I need to withdraw some cash from the ATM."
我需要從自動提款機提領一些現金。
incrementing /ˈɪŋkrəmɛntɪŋ/ verb
increasing a number or value by a fixed amount.
遞增;累加
📝 例句
"You can kind of keep incrementing the number of years."
你可以逐年增加年份。
✨ 延伸例句
"The counter is incrementing with each new entry."
計數器隨著每個新條目而遞增。
straightforward /ˌstreɪtˈfɔːwəd/ adjective
uncomplicated and easy to do or understand.
簡單的;直接的
📝 例句
"But no straightforward way to do it."
但沒有直接的方法可以做到。
✨ 延伸例句
"The instructions for assembling the furniture are straightforward."
組裝家具的說明很簡單明瞭。
🎯 共 10 題測驗

1 According to the video, what is the initial deposit amount used in the example? 根據影片,範例中使用的初始存款金額是多少? According to the video, what is the initial deposit amount used in the example?

根據影片,範例中使用的初始存款金額是多少?

✅ 正確! ❌ 錯誤,正確答案是 B

The video starts with an example of depositing $100 into a bank account.

影片以存入 100 美元到銀行帳戶的範例開始。

2 What is the interest rate used in the primary example of the video? 影片主要範例中使用的利率是多少? What is the interest rate used in the primary example of the video?

影片主要範例中使用的利率是多少?

✅ 正確! ❌ 錯誤,正確答案是 C

The video repeatedly uses a 10% annual interest rate for its main example.

影片在其主要範例中反覆使用 10% 的年利率。

3 What is the value of the initial deposit after one year with 10% annual interest? 在 10% 年利率下,一年後的初始存款價值是多少? What is the value of the initial deposit after one year with 10% annual interest?

在 10% 年利率下,一年後的初始存款價值是多少?

✅ 正確! ❌ 錯誤,正確答案是 C

After one year, $100 earns 10% interest ($10), resulting in a total of $110.

一年後,100 美元產生 10% 的利息(10 美元),總額為 110 美元。

4 What is the value of the account after two years of 10% annual compounding? 經過兩年 10% 的年複利後,帳戶價值是多少? What is the value of the account after two years of 10% annual compounding?

經過兩年 10% 的年複利後,帳戶價值是多少?

✅ 正確! ❌ 錯誤,正確答案是 C

In the second year, 10% interest is calculated on the new balance of $110, which is $11, making the total $121.

第二年,10% 的利息是根據 110 美元的新餘額計算,即 11 美元,總額為 121 美元。

5 What is the mathematical term for the process of earning interest on previous years' interest? 在前幾年的利息上再賺取利息的過程,在數學上稱為什麼? What is the mathematical term for the process of earning interest on previous years' interest?

在前幾年的利息上再賺取利息的過程,在數學上稱為什麼?

✅ 正確! ❌ 錯誤,正確答案是 B

The video explicitly states 'that's why we say it compounds' when explaining interest on interest.

影片在解釋利息的利息時,明確指出 '這就是為什麼我們說它是複利'。

6 What is the general formula for calculating compound interest mentioned in the video? 影片中提到的計算複利的通用公式是什麼? What is the general formula for calculating compound interest mentioned in the video?

影片中提到的計算複利的通用公式是什麼?

✅ 正確! ❌ 錯誤,正確答案是 B

The video shows the formula as 100 * 1.1^n, which generalizes to Principal * (1 + rate)^n.

影片將公式展示為 100 * 1.1^n,其通用形式為 本金 * (1 + 利率)^n。

7 Why does the video say calculating compound interest is difficult? 影片為什麼說計算複利很困難? Why does the video say calculating compound interest is difficult?

影片為什麼說計算複利很困難?

✅ 正確! ❌ 錯誤,正確答案是 B

To solve for the number of years to double money, the video shows the need to use logarithms.

為了解出翻倍所需的年份,影片展示了需要使用對數。

8 If you want to double your money at a 10% interest rate, what equation must you solve? 如果你想以 10% 的利率讓錢翻倍,你必須解哪個方程式? If you want to double your money at a 10% interest rate, what equation must you solve?

如果你想以 10% 的利率讓錢翻倍,你必須解哪個方程式?

✅ 正確! ❌ 錯誤,正確答案是 B

The video shows dividing 100 * 1.1^x = 200 by 100 to get 1.1^x = 2.

影片展示了將 100 * 1.1^x = 200 除以 100,得到 1.1^x = 2。

9 What will be discussed in the next video to solve the doubling problem? 下一支影片將討論什麼來解決翻倍問題? What will be discussed in the next video to solve the doubling problem?

下一支影片將討論什麼來解決翻倍問題?

✅ 正確! ❌ 錯誤,正確答案是 B

The video concludes by stating it will explain 'something called the rule of 72'.

影片結尾時表示將解釋 '某個叫做 72 法則的東西'。

10 What makes the calculation for 9.3% interest more difficult than for 10%? 讓 9.3% 利率的計算比 10% 更困難的原因是什麼? What makes the calculation for 9.3% interest more difficult than for 10%?

讓 9.3% 利率的計算比 10% 更困難的原因是什麼?

✅ 正確! ❌ 錯誤,正確答案是 B

The video mentions that with 9.3%, the calculation becomes 'even more difficult', implying the non-round number adds complexity.

影片提到 9.3% 的情況下,計算變得 '更困難',暗示非整數增加了複雜性。

測驗完成!得分: / 10